Instruction Name

Idr load

str store

Idp load pair

stp store pair

mov move

movk move/keep

<label>: label

adr load address

Idr load address

mov move

msr write

mrs read

add add

sub subtract

and bitwise and

orr bitwise or

b jump

bl store then jump

br jump (register)

bir store then jump (register)
cmp compare

bne branch not equal

beq branch if equal

bit branch if less than

ble branch less than or equal
bgt branch if greater than
bge branch greater than or equal
cbz compare, branch on zero

cbnz compare, branch if not zero

Parameters

<ra>, [<rb>]
<ra>, [<rb>]
<ral>, <ra2>, [<rb>]
<ral>, <ra2>, [<rb>]

<ra>, #<immediate>, LSL #<shift>
<ra>, #<immediate>, LSL #<shift>

<label>:
<ra>, <label>
<ra>, <label>

<ral>, <ra2>

<special_register>, <ra>
<ra>, <special_register>

<dest> <a>
<dest> <a>
<dest> <a>
<dest> <a>

<label>
<label>
<ra>
<ra>

<ral>, <ra2/immediate>
<label>

<label>

<label>

<label>

<label>

<label>

<ra>, <label>

<ra>, <label>

Function
Accessing Memory
load value from address in <rb> into <ra>
store value in <ra> to address in <rb>
load values from address in <rb> into <ral> and <ra2>
store values in <ral> and <ra2> to address in <rb>

Loading Immediates
load <immediate> into <ra>, optionally shifted left by <shift>
same function as mov, without replacing any other bits

Loading Addresses from Labels
assembly code can be labeled using <label>:
load the address of the first instruction after the label to <ra>
load the address of the first instruction after the label to <ra>

Moving Between Registers
copy contents from register <ra2> to <ral>

Read and Write Special Registers
write to a special register from another register
read from a special register into another register

Arithmetic and Logical Instructions
add <a> and , store result in <dest>
subtract from <a>, store result in <dest>
bitwise and <a> and , store result in <dest>
bitwise or <a> and , store result in <dest>

Branching
will unconditionally jump to address of <label>

stores next address in link register and jumps to address of <label>

same as b, but jumps to address in register <ra>
same as bl, but jumps to address in register <ra>

Conditional Branching
compares values in <ral> with <ra2> or <immediate> and sets
flags for future conditional branching instructions
branches to <label> if condition flags show not equal
branches to <label> if condition flags show equal
branches to <label> if condition flags show less than
branches to <label> if condition flags show less than or equal
branches to <label> if condition flags show greater than

branches to <label> if condition flags show greater than or equal

compares value in <ra> to zero, branches to <label> if equal
compares value in <ra> to zero, branches to <label> if not equal

Notes
offset (in range [-256, 255]): Idr ra, [rb, #offset]

post index (changes value to rb after load/store): Idr ra, [rb], #30
pre-index (changes value to rb before load/store): Idr r0, [r3, #30]!

immediate must be 16 bits, shift must be multiple of 16
assembler can convert mov x12, #(1 << 21) into mov x12, 0x20, LSL #16

used if label is within the same linker section
used if label is in different linker section

same instruction as loadign immediates

<dest> must be a register, can be same as <a> or
<a> must be register
 may be register or immediate

ret instruction jumps to address in link register

ret instruction jumps to address in link register

if branch isn't taken execution continues forward

if branch isn't taken execution continues forward
does not set condition flags

