
Instruction Name Parameters Function Notes

ldr load <ra>, [<rb>] load value from address in <rb> into <ra>
str store <ra>, [<rb>] store value in <ra> to address in <rb>
ldp load pair <ra1>, <ra2>, [<rb>] load values from address in <rb> into <ra1> and <ra2>
stp store pair <ra1>, <ra2>, [<rb>] store values in <ra1> and <ra2> to address in <rb>

mov move <ra>, #<immediate>, LSL #<shift> load <immediate> into <ra>, optionally shifted left by <shift>
movk move/keep <ra>, #<immediate>, LSL #<shift> same function as mov, without replacing any other bits

<label>: label <label>: assembly code can be labeled using <label>:
adr load address <ra>, <label> load the address of the first instruction after the label to <ra> used if label is within the same linker section
ldr load address <ra>, <label> load the address of the first instruction after the label to <ra> used if label is in different linker section

mov move <ra1>, <ra2> copy contents from register <ra2> to <ra1> same instruction as loadign immediates

msr write <special_register>, <ra> write to a special register from another register
mrs read <ra>, <special_register> read from a special register into another register

add add <dest> <a> add <a> and , store result in <dest>
sub subtract <dest> <a> subtract from <a>, store result in <dest>
and bitwise and <dest> <a> bitwise and <a> and , store result in <dest>
orr bitwise or <dest> <a> bitwise or <a> and , store result in <dest>

b jump <label> will unconditionally jump to address of <label>
bl store then jump <label> stores next address in link register and jumps to address of <label> ret instruction jumps to address in link register
br jump (register) <ra> same as b, but jumps to address in register <ra>
blr store then jump (register) <ra> same as bl, but jumps to address in register <ra> ret instruction jumps to address in link register

cmp compare <ra1>, <ra2/immediate>
compares values in <ra1> with <ra2> or <immediate> and sets
flags for future conditional branching instructions

bne branch not equal <label> branches to <label> if condition flags show not equal
beq branch if equal <label> branches to <label> if condition flags show equal
blt branch if less than <label> branches to <label> if condition flags show less than
ble branch less than or equal <label> branches to <label> if condition flags show less than or equal
bgt branch if greater than <label> branches to <label> if condition flags show greater than
bge branch greater than or equal <label> branches to <label> if condition flags show greater than or equal
cbz compare, branch on zero <ra>, <label> compares value in <ra> to zero, branches to <label> if equal
cbnz compare, branch if not zero <ra>, <label> compares value in <ra> to zero, branches to <label> if not equal

if branch isn't taken execution continues forward

if branch isn't taken execution continues forward
does not set condition flags

offset (in range [-256, 255]): ldr ra, [rb, #offset]
post index (changes value to rb after load/store): ldr ra, [rb], #30
pre-index (changes value to rb before load/store): ldr r0, [r3, #30]!

Accessing Memory

Loading Immediates
immediate must be 16 bits, shift must be multiple of 16
assembler can convert mov x12, #(1 << 21) into mov x12, 0x20, LSL #16

Loading Addresses from Labels

Moving Between Registers

Read and Write Special Registers

Arithmetic and Logical Instructions
<dest> must be a register, can be same as <a> or
<a> must be register
 may be register or immediate

Branching

Conditional Branching

