CS 140e

Operating Systems from the Ground Up




CS 140e Goals

e Learn OS fundamentals.

e Disks, File systems, I/O
 Threads & Processes

e Scheduling

e Virtual Memory

 Protection & Security
 |nterrupts

 Concurrency & Synchronization

e Build an OS from scratch.
e Learn embedded development fundamentals.

e Write low-level embedded software and drivers.



About CS 140e: Why?

e Brand new Operating Systems course!

e Allcourse material is new.
 Not based off any existing course.
e ..expectrough edges.

e Everything is real.
 No virtual machines. All software runs on Raspberry Pi 3.

e A bottom-up, from scratch approach.

* You write vast majority of software.

e A modern approach.

 Multicore, 64-bit ARMv8 platform.
e Modern programming languages and tools.
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Who We Are

Jennifer Lin

Your TA!
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Sergio Benitez

Ph.D., Instructor



Who You Are

Have you implemented any operating system mechanisms
such as virtual memory support, processes, or threads?

© Yes, Many
@ VYes, Several
Yes, A Few

50% ® No




Who You Are

Have you implemented any bare metal software such as
bootloaders or device drivers?

© Yes, Many
@ VYes, Several
Yes, A Few

® No




Who You Are

Do you have any experience with embedded software
development?

© Yes, Alot
@ Yes, Some
Yes, A Little

® No




e | ectures

e Mondays and Wednesday, 3:00pm - 4:20pm (160-124)
* Focus on theoretical/conceptual OS concepts

e Labs (optional but encouraged)

« Mondays and Wednesday, 5:30pm - 6:30pm (Gates 463a)
e Focus on assignments.

e Course Website: https://cs140e.stanford.edu

 News, assignments, policies, etc.

e Still awork in progress.

e Q&A on Piazza (see course website for link)
o Office Hours TBA.


https://cs140e.stanford.edu

Assignments and Exams

e Midterm and Final Exam

 Focus primarily on lecture material.
 Open notes. Anything written/printed is allowed.

e 5 Heavy (!!) Programming Assighments
 Budget about 10 - 15 hours per week per assignment.
e First assignment out on Wednesday.
 Writing component: answer questions.
e [Individual, but collaboration on ideas is encouraged.
e All code must be your own. Please don’t cheat.
e Startearly. Don’t procrastinate!

e Late Policy: 100 penalized hours per assignment

 Does not apply to last assignment.
e Score capped at max(0, 100 - n)% for n hours late



Assignment Schedule

Assignment O: Getting Started

o Set-up Raspberry Pi. Write first program.
« QOutonWednesday. Due Monday.

Assignment 1: The Shell

 Write a bash-like shell that runs on your machine and Pi.
 Write ashell command that loads program over UART: “bootloader”.

Assignment 2: File System
 Write SD card driver and FAT32 file system.

Assignment 3: Spawn

e Load and execute programs from SD card in separate processes.

Assignment 4: Preemptive Multicore Multitasking

 Run multiple programs at once on multiple cores.



e Grading Breakdown

e 55% assignments
e 20% midterm
e 25% final exam

e (+/-) 5% participation
e We hope to gives lots of As!



Who You Are

In which programming languages do you feel comfortable
and confident writing software?

C, C++, Java, Python, JavaScript
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ust

e Memory-safe without a GC.

e No dataraces, guaranteed!
e Minimal runtime.

e Static, strong types.

e Package manager.



C: Undefined Behavior

int main(int argc, char **argv) {
unsigned long a[ 1 ];
a[2] = Ox71tff7b36¢cebUL;

return O;
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C: Undefined Behavior

int main(int argc, char **argv) {
unsigned long a[1];
a[2] = Ox7{tft 7b36cebUL;

return O;

stack

ret

Ox7ffff7..

SP

al0]

undef: Error:

.netrc file is readable by others.

undef: Remove password or make file unreadable by others.

sossalppe



Aliasing is Hard!

int main() {
std: :vector<std: :string> v;

v.push_back("Hello, ");
std: :string &x = v[0];
v.push_back(" world!™);

std: :cout << Xx;

¥

Rusty Types for Solid Safety (PLAS'16)
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Restricted Aliasing

C++

int main() {
vector<string> v;

v.push_back("Hello, ");
string &x = v[0];
v.push_back(" world!");

cout << X;

Rusty Types for Solid Safety (PLAS'16)

Rust
fn main() {

let mut v = Vec::new();
v.push("Hello, ");

let x = &v[0];

v.push(" world!");

println!("{}", X);
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