CS 140e

Operating Systems from the Ground Up

CS 140e Goals

e Learn OS fundamentals.

e Disks, File systems, I/O
 Threads & Processes

e Scheduling

e Virtual Memory

 Protection & Security
 |nterrupts

 Concurrency & Synchronization

e Build an OS from scratch.
e Learn embedded development fundamentals.

e Write low-level embedded software and drivers.

About CS 140e: Why?

e Brand new Operating Systems course!

e Allcourse material is new.
 Not based off any existing course.
e ..expectrough edges.

e Everything is real.
 No virtual machines. All software runs on Raspberry Pi 3.

e A bottom-up, from scratch approach.

* You write vast majority of software.

e A modern approach.

 Multicore, 64-bit ARMv8 platform.
e Modern programming languages and tools.

About CS 140e: Why?

Ras berr?l Pi3 omesons e~ ElEMENTIL,

odel B 85.6mm x 56mm x 21mm / Ports
40 Pin =
Extended GPIO o
10/100
Broadcom ; LAN Port
BCM2837 64bit
Quad Core CPU
at 1.2GHz,
1GB RAM)
Pije) ~ 3.5mm 4-role

On Board ./' 3G Composite Video

Bluetooth 4.1 NG and Audio

Wi-Fi Output Jack

MicroSD CS| Camera Port

Card Slot

Full Size HDMI
Video Output

Micro USB Power Input.

DSI Display Port Upgraded switched
Rower source that can

andle up to 2.5 Amps

Who We Are

Jennifer Lin

Your TA!

Who We Are

Dawson Engler

Professor, Instructor

Who We Are

Sergio Benitez

Ph.D., Instructor

Who You Are

Have you implemented any operating system mechanisms
such as virtual memory support, processes, or threads?

© Yes, Many
@ VYes, Several
Yes, A Few

50% ® No

Who You Are

Have you implemented any bare metal software such as
bootloaders or device drivers?

© Yes, Many
@ VYes, Several
Yes, A Few

® No

Who You Are

Do you have any experience with embedded software
development?

© Yes, Alot
@ Yes, Some
Yes, A Little

® No

e | ectures

e Mondays and Wednesday, 3:00pm - 4:20pm (160-124)
* Focus on theoretical/conceptual OS concepts

e Labs (optional but encouraged)

« Mondays and Wednesday, 5:30pm - 6:30pm (Gates 463a)
e Focus on assignments.

e Course Website: https://cs140e.stanford.edu

 News, assignments, policies, etc.

e Still awork in progress.

e Q&A on Piazza (see course website for link)
o Office Hours TBA.

https://cs140e.stanford.edu

Assignments and Exams

e Midterm and Final Exam

 Focus primarily on lecture material.
 Open notes. Anything written/printed is allowed.

e 5 Heavy (!!) Programming Assighments
 Budget about 10 - 15 hours per week per assignment.
e First assignment out on Wednesday.
 Writing component: answer questions.
e [Individual, but collaboration on ideas is encouraged.
e All code must be your own. Please don’t cheat.
e Startearly. Don’t procrastinate!

e Late Policy: 100 penalized hours per assignment

 Does not apply to last assignment.
e Score capped at max(0, 100 - n)% for n hours late

Assignment Schedule

Assignment O: Getting Started

o Set-up Raspberry Pi. Write first program.
« QOutonWednesday. Due Monday.

Assignment 1: The Shell

 Write a bash-like shell that runs on your machine and Pi.
 Write ashell command that loads program over UART: “bootloader”.

Assignment 2: File System
 Write SD card driver and FAT32 file system.

Assignment 3: Spawn

e Load and execute programs from SD card in separate processes.

Assignment 4: Preemptive Multicore Multitasking

 Run multiple programs at once on multiple cores.

e Grading Breakdown

e 55% assignments
e 20% midterm
e 25% final exam

e (+/-) 5% participation
e We hope to gives lots of As!

Who You Are

In which programming languages do you feel comfortable
and confident writing software?

C, C++, Java, Python, JavaScript

In which programming languages do you feel comfortable
and confident writing software?

C, C++, Java, Python, JavaScript

ust

e Memory-safe without a GC.

e No dataraces, guaranteed!
e Minimal runtime.

e Static, strong types.

e Package manager.

C: Undefined Behavior

int main(int argc, char **argv) {
unsigned long a[1];
a[2] = Ox71tff7b36¢cebUL;

return O;

C: Undefined Behavior

int main(int argc, char **argv) {
unsigned long a[1];
al2] = Ox71ttf7b36cebUL;

return O;

stack

ret

SP

sossalppe

C: Undefined Behavior

int main(int argc, char **argv) {
unsigned long a[1];
a[2] = Ox7{tft 7b36cebUL;

return O;

stack

ret
Ox7ffff7..

SP

sossalppe

C: Undefined Behavior

int main(int argc, char **argv) {
unsigned long a[1];
a[2] = Ox7{tft 7b36cebUL;

return O;

stack

ret

Ox7ffff7..

SP

al0]

undef: Error:

.netrc file is readable by others.

undef: Remove password or make file unreadable by others.

sossalppe

Aliasing is Hard!

int main() {
std: :vector<std: :string> v;

v.push_back("Hello, ");
std: :string &x = v[0];
v.push_back(" world!™);

std: :cout << Xx;

¥

Rusty Types for Solid Safety (PLAS'16)

Aliasing is Hard!

int main() {
std: :vector<std: :string> v;

% v.push_back("Hello, "); /
std: :string &x = v[0];
v.push_back(" world!");

std: :cout << Xx;

¥

Rusty Types for Solid Safety (PLAS'16)

Aliasing is Hard!

int main() {
std: :vector<std: :string> v;

v.push_back("Hello, ");
® std::string &x = v[0];

v.push_back(" world!");

std::cout << Xx;

¥

Rusty Types for Solid Safety (PLAS'16)

Aliasing is Hard!

int main() {
std: :vector<std: :string> v;

v.push_back("Hello, ");
<::S%d%%ﬁ%#%ﬂg—&*—=—¥£@}?
P> v.push_back(" world!");

std::cout << Xx;

¥

Rusty Types for Solid Safety (PLAS'16)

=,
8\
<

'/'

Aliasing is Hard!

int main() {
std: :vector<std: :string> v;

v.push_back("Hello, ");
<::s%d++s%#%ﬂg—&x—=—vE@}f
P> v.push_back(" world!");

std: :cout << Xx;

¥

Rusty Types for Solid Safety (PLAS'16)

Aliasing is Hard!

int main() {
std: :vector<std: :string> v;

v.push_back("Hello, ");
<::S%d%%ﬁ%#%ﬂg—&*—=—¥£@}?
P> v.push_back(" world!");

std::cout << Xx;

¥

Rusty Types for Solid Safety (PLAS'16)

Aliasing is Hard!

int main() {
std: :vector<std: :string> v;

v.push_back("Hello, ");

st strthg—Sx——vidl;
<:jv.push_back(" world!");

P std eout— —x:
}

Rusty Types for Solid Safety (PLAS'16)

Aliasing is Hard!

int main() {
std: :vector<std: :string> v;

v.push_back("Hello, ");
<::S%d%%ﬁ%#%ﬂg—&*—=—¥£@}?
P> v.push_back(" world!");

std::cout << Xx;

¥

Rusty Types for Solid Safety (PLAS'16)

=,
8\
<

'/'

Restricted Aliasing

C++

int main() {
vector<string> v;

v.push_back("Hello, ");
string &x = v[0];
v.push_back(" world!");

cout << X;

Rusty Types for Solid Safety (PLAS'16)

Rust
fn main() {

let mut v = Vec::new();
v.push("Hello, ");

let x = &v[0];

v.push(" world!");

println!("{}", X);

Restricted Aliasing

fn main() {
let mut v = Vec::new();

% v.push("Hello, ");

let x = &v[0];
v.push(" world!");

println!("{}", Xx);

Rusty Types for Solid Safety (PLAS'16)

Restricted Aliasing

fn main() {
let mut v = Vec::new();

v.push("Hello, ");
P let x = &v[0];

v.push(" world!");

println!("{}", Xx);

Rusty Types for Solid Safety (PLAS'16)

Restricted Aliasing

fn main() {
let mut v = Vec::new();

v.push("Hello, ");
let x = &v[0];

% v.push(" world!");

println!("{}", Xx);

Rusty Types for Solid Safety (PLAS'16)

Rusty Types for Solid Safety (PLAS'16)

