
CS 140e
Opera&ng Systems from the Ground Up

CS 140e Goals

• Learn OS fundamentals.
• Disks, File systems, I/O
• Threads & Processes
• Scheduling
• Virtual Memory
• Protection & Security
• Interrupts
• Concurrency & Synchronization

• Build an OS from scratch.
• Learn embedded development fundamentals.
• Write low-level embedded soBware and drivers.

About CS 140e: Why?

• Brand new Opera&ng Systems course!
• All course material is new.
• Not based off any existing course.
• …expect rough edges.

• Everything is real.
• No virtual machines. All software runs on Raspberry Pi 3.

• A boFom-up, from scratch approach.
• You write vast majority of software.

• A modern approach.
• Multicore, 64-bit ARMv8 platform.
• Modern programming languages and tools.

About CS 140e: Why?

Who We Are

Jennifer Lin
Your TA!

Who We Are

Dawson Engler
Professor, Instructor

Who We Are

Sergio Benitez
Ph.D., Instructor

Who You Are

43%

50%

4%4%

Yes, Many
Yes, Several
Yes, A Few
No

Have you implemented any opera1ng system mechanisms
such as virtual memory support, processes, or threads?

Who You Are

71%

14%

11%
4%

Yes, Many
Yes, Several
Yes, A Few
No

Have you implemented any bare metal so>ware such as
bootloaders or device drivers?

Who You Are

32%

43%

11%

14%

Yes, A Lot
Yes, Some
Yes, A Little
No

Do you have any experience with embedded so>ware
development?

Administrivia

• Lectures
• Mondays and Wednesday, 3:00pm - 4:20pm (160-124)
• Focus on theoretical/conceptual OS concepts

• Labs (op&onal but encouraged)
• Mondays and Wednesday, 5:30pm - 6:30pm (Gates 463a)
• Focus on assignments.

• Course Website: hFps://cs140e.stanford.edu
• News, assignments, policies, etc.
• Still a work in progress.

• Q&A on Piazza (see course website for link)
• Office Hours TBA.

https://cs140e.stanford.edu

Assignments and Exams

• Midterm and Final Exam
• Focus primarily on lecture material.
• Open notes. Anything written/printed is allowed.

• 5 Heavy (!!) Programming Assignments
• Budget about 10 - 15 hours per week per assignment.
• First assignment out on Wednesday.
• Writing component: answer questions.
• Individual, but collaboration on ideas is encouraged.
• All code must be your own. Please don’t cheat.
• Start early. Don’t procrastinate!

• Late Policy: 100 penalized hours per assignment
• Does not apply to last assignment.
• Score capped at max(0, 100 - n)% for n hours late

Assignment Schedule

• Assignment 0: Ge^ng Started
• Set-up Raspberry Pi. Write first program.
• Out on Wednesday. Due Monday.

• Assignment 1: The Shell
• Write a bash-like shell that runs on your machine and Pi.
• Write a shell command that loads program over UART: “bootloader”.

• Assignment 2: File System
• Write SD card driver and FAT32 file system.

• Assignment 3: Spawn
• Load and execute programs from SD card in separate processes.

• Assignment 4: Preemp&ve Mul&core Mul&tasking
• Run multiple programs at once on multiple cores.

Grading

• Grading Breakdown
• 55% assignments
• 20% midterm
• 25% final exam
• (+/-) 5% participation

• We hope to gives lots of As!

Who You Are

In which programming languages do you feel comfortable
and confident wri1ng so>ware?

C, C++, Java, Python, JavaScript

Rust!

In which programming languages do you feel comfortable
and confident wri1ng so>ware?

C, C++, Java, Python, JavaScript

Rust!

• Memory-safe without a GC.

• No data races, guaranteed!

• Minimal runtime.

• Static, strong types.

• Package manager.

C: Undefined Behavior

int main(int argc, char **argv) {
 unsigned long a[1];
 a[2] = 0x7ffff7b36cebUL;
 return 0;
}

C: Undefined Behavior

int main(int argc, char **argv) {
 unsigned long a[1];
 a[2] = 0x7ffff7b36cebUL;
 return 0;
}

ret

sp

a[0]

addresses

stack

C: Undefined Behavior

int main(int argc, char **argv) {
 unsigned long a[1];
 a[2] = 0x7ffff7b36cebUL;
 return 0;
}

ret
0x7ffff7..

sp

a[0]

addresses

stack

C: Undefined Behavior

int main(int argc, char **argv) {
 unsigned long a[1];
 a[2] = 0x7ffff7b36cebUL;
 return 0;
}

ret
0x7ffff7..

sp

a[0]

addresses

stack

undef: Error: .netrc file is readable by others.
undef: Remove password or make file unreadable by others.

Rusty Types for Solid Safety (PLAS’16)

Aliasing is Hard!
int main() {
 std::vector<std::string> v;

 v.push_back("Hello, ");

 std::string &x = v[0];

 v.push_back(" world!");

 std::cout << x;
}

Rusty Types for Solid Safety (PLAS’16)

Aliasing is Hard!
int main() {
 std::vector<std::string> v;

 v.push_back("Hello, ");

 std::string &x = v[0];

 v.push_back(" world!");

 std::cout << x;
}

v

v[0]

Rusty Types for Solid Safety (PLAS’16)

Aliasing is Hard!
int main() {
 std::vector<std::string> v;

 v.push_back("Hello, ");

 std::string &x = v[0];

 v.push_back(" world!");

 std::cout << x;
}

v

v[0]

x

Rusty Types for Solid Safety (PLAS’16)

Aliasing is Hard!
int main() {
 std::vector<std::string> v;

 v.push_back("Hello, ");

 std::string &x = v[0];

 v.push_back(" world!");

 std::cout << x;
}

v

v[0]

x

Rusty Types for Solid Safety (PLAS’16)

Aliasing is Hard!

v

v[0]

x

int main() {
 std::vector<std::string> v;

 v.push_back("Hello, ");

 std::string &x = v[0];

 v.push_back(" world!");

 std::cout << x;
}

Rusty Types for Solid Safety (PLAS’16)

Aliasing is Hard!
int main() {
 std::vector<std::string> v;

 v.push_back("Hello, ");

 std::string &x = v[0];

 v.push_back(" world!");

 std::cout << x;
}

v

v[0]

x

v[0] v[1]

Rusty Types for Solid Safety (PLAS’16)

Aliasing is Hard!
int main() {
 std::vector<std::string> v;

 v.push_back("Hello, ");

 std::string &x = v[0];

 v.push_back(" world!");

 std::cout << x;
}

v

v[0]

x

v[0] v[1]

Rusty Types for Solid Safety (PLAS’16)

Aliasing is Hard!
int main() {
 std::vector<std::string> v;

 v.push_back("Hello, ");

 std::string &x = v[0];

 v.push_back(" world!");

 std::cout << x;
}

v

v[0]

x

Rusty Types for Solid Safety (PLAS’16)

Restricted Aliasing

int main() {
 vector<string> v;

 v.push_back("Hello, ");

 string &x = v[0];

 v.push_back(" world!");

 cout << x;
}

fn main() {
 let mut v = Vec::new();

 v.push("Hello, ");

 let x = &v[0];

 v.push(" world!");

 println!("{}", x);
}

C++ Rust

Rusty Types for Solid Safety (PLAS’16)

Restricted Aliasing

v

v[0]

fn main() {
 let mut v = Vec::new();

 v.push("Hello, ");

 let x = &v[0];

 v.push(" world!");

 println!("{}", x);
}

Rusty Types for Solid Safety (PLAS’16)

Restricted Aliasing
fn main() {
 let mut v = Vec::new();

 v.push("Hello, ");

 let x = &v[0];

 v.push(" world!");

 println!("{}", x);
}

v

v[0]

x

Rusty Types for Solid Safety (PLAS’16)

Restricted Aliasing
fn main() {
 let mut v = Vec::new();

 v.push("Hello, ");

 let x = &v[0];

 v.push(" world!");

 println!("{}", x);
}

v

v[0]

x

Rusty Types for Solid Safety (PLAS’16)

Restricted Aliasing
fn main() {
 let mut v = Vec::new();

 v.push("Hello, ");

 let x = &v[0];

 v.push(" world!");

 println!("{}", x);
}

v

v[0]

xbreaks invariant => statically disallowed

