CS 140 Lecture 17: disk, files

Dawson Engler
Stanford CS department

Example: a typical disk

A typical sun disk (two, three years ago)
1965 cylinders, 17 heads, 80 sec/track, 512 byte
sectors
(1965 * 17 * 80 * 512) / (1024 * 1024) = 1304 MB
or about 700,000 double-spaced typewritten pages
platter RPM = 3600 RPM (some run at 7200RPM)
Technology advances mostly in miniaturization
in 1975 40Mbytes took up space the size of a washing
machine
today, my laptop has a 4GB disk.

The present

A bottom up exposition of file systems

Disk:
what it looks like
some implications
Files:
what they look like
why
some implications

The lecture ignores many other, richer storage system
organizations (e.g., databases)

Disk vs.

Smallest write: sector
Atomic write = sector
Random access: 10ms

not on a good curve
Sequential access: 20MB/s
Cost $.02MB ('99 PC mag)

Crash: doesn't matter
("non-volatile")

Memory

(usually) bytes
byte, word
100 ns
faster all the time
200-1000MB/s
$1IMB
contents gone ("volatile")

What do disks look like?

2-30 heads (platters * 2)
diameter 14" to 2.5"
700-2048 tracks per
surface
16-160 sectors
per track
sector size: track
64-8k bytes
512 for most pc's
note: inter-sector gaps

capacity: 20M-106

platter

Disk arm
Read/write head

main adjectives: BIG, sloowwwwww

sectors

Some useful facts

Disk reads/writes in terms of sectors, not bytes
read/write single sector or adjacent groups

How to write a single byte? "Read-modify-write"
read in sector containing the byte [T
modify that byt C—l
write entire sec':’o_rmmx/v
key: if cached, don't need to read in E—

Sector = unit of atomicity.
sector write done completely, even if crash in middle

(disk saves up enough momentum to complete)
larger atomic units have to be synthesized by OS

Some useful costs
Seek: move disk arm to the right Traé/\v
best case: Oms (on track already) <>
worst: ~30-50ms
(move over entire disk)
average: 10-20ms, 1/3 worst case
Rotational delay: wait for sec to rotate under head
best: Oms (over sector)
worst: ~16ms (entire rotation)
average: ~8ms (1/2 worst case)

Transfer bandwidth: suck bits of f of device

Cost of disk access? Seek + rotation + transfer time
read a single sector: 10ms + 8ms + 50us ~= 18ms
Cool: read an entire track? Seek + transfer! (why?)

What's so hard about grouping blocks???
In some sense, the problems we will look at are no

different than those in virtual memory

like page tables, file system meta data are simply data
structures used to construct mappings.

Page table: map virtual page # to physical page #

28 Page table 33

file meta data: map byte offset to disk block address

directory: map name to disk block address

foo.c 3330103

Some useful trends

Disk bandwidth and cost/bit improving exponentially
similar to CPU speed, memory size, etc.
Seek time and rotational delay improving *very* slowly
why? require moving physical object (disk arm)
Some implications:
disk accesses a huge system bottleneck & getting worse
bandwidth increase lets system (pre-)fetch large chunks
for about the same cost as small chunk.
Result? trade bandwidth for latency if you can get lots of
related stuff.
How to get related stuff? Cluster together on disk
Memory size increasing faster than typical workload size
More and more of workload fits in file cache
disk traffic changes: mostly writes and new data

FS vs VM

In some ways problem similar:
want location transparency, oblivious to size, & protection
In some ways the problem is easier:
CPU time to do FS mappings not a big deal (= no TLB)
Page tables deal with sparse address spaces and random
access, files are dense (O .. filesize-1) & ~sequential
In some way's problem is harder:
Each layer of translation = potential disk access
Space a huge premium! (But disk is huge?!?!) Reason?
Cache space never enough, the amount of data you can
Get into one fetch never enough.

Range very extreme: Many <10k, some more than GB.
Implications?

Files: named bytes on disk

File abstraction:
user's view: named sequence of bytes

int main() --

FS's view: collection of disk blocks
file system's job: translate name & offset to disk blocks
offsetiint ———disk addr:int

File operations:

create a file, delete a file

read from file, write to file
Want: operations to have as few disk accesses as
possible & have minimal space overhead

foo.c

Some working intuitions

FS performance dominated by # of disk accesses
Each access costs 10s of milliseconds
Touch the disk 50-100 extra times = 1 *second*

Can easily do 100s of millions of ALU ops in same time
Access cost dominated by movement, not transfer
Can get 20x the data for only ~5% more overhead

1 sector = 10ms + 8ms + 50us (512/10MB/s) = 18ms

20 sectors = 10ms + 8ms + 1ms = 19ms
Observations:

all blocks in file tend to be used together, sequentially

all files in a directory tend to be used together

all names in a directory tend to be used together

How to exploit?

Common addressing patterns

Sequential:
file data processed in sequential order
by far the most common mode
example: editor writes out new file, compiler reads in file,
etc.
Random access:
address any block in file directly without passing through
predecessors
examples: data set for demand paging, databases
Keyed access:
search for block with particular values
examples: associative data base, index
usually not provided by 0S

Linked files

Basically a linked list on disk.
Keep a linked list of all free blocks
file descriptor contents: a pointer to file's first block
in each block, keep a pointer to the next one

how do you find
the last block in a?

v

]
L LT,
| E—

file a (base=1) file b (base=5)

pro: easy dynamic growth & sequential access, no
fragmentation

con?

Examples (sort-of): Alto, TOPS-10, DOS FAT

Problem: how to track file's data?

Disk management:
Need to keep track of where file contents are on disk
Must be able to use this to map byte offset to disk block

The data structure used to track a file's sectors is called
a file descriptor

file descriptors often stored on disk along with file
Things to keep in mind while designing file structure:

Most files are small

Much of the disk is allocated to large files

Many of the I/0O operations are made to large files

Want good sequential and good random access (what do
these require?)

Example: DOS FS (simplified)

Uses linked files. Cute: links reside in fixed-sized

“file allocation table" (FAT) rather than in the blocks.
FAT (16-bit entries)

. 0| free file a
Dlr'ec‘ror‘y(5)1 eof l6 I l4] l3 I
a6 2 1 .
file b
b: 2 3 eof > 1
=
5[eof
6 4

Still do pointer chasing, but can cache entire FAT so can
be cheap compared to disk access.

Simple mechanism: contiguous allocation

"Extent-based": allocate files like segmented memory
When creating a file, make the user specify pre-specify
its length and allocate all space at once
File descriptor contents: location and size

what happens if

| | | | | file ¢ needs 2
/« sectors???
file a'(base=1len=3) file b (base=5 len=2)

Example: IBM 0S/360

Pro: simple, fast access, both sequential and random.
Cons? (What does VM scheme does this correspond to?)

FAT discussion

Entry size = 16 bits
What's the maximum size of the FAT?
Given a 512 byte block, what's the maximum size of FS?
One attack: go to bigger blocks. Pro? Con?

Space overhead of FAT is trivial:

2 bytes / 512 byte block = ~.4% (Compare to Unix)
Reliability: how to protect against errors?

Create duplicate copies of FAT on disk.

State duplication a very common theme in reliability
Bootstrapping: where is root directory?

Fixed location on disk:| FAT| (opt) FAT Ir‘oo'r dir‘l |

Indexed files

Each file has an array holding all of it's block pointers
(purpose and issues = those of a page table)
max file size fixed by array's size (static or dynamic?)
create: allocate array to hold all file's blocks, but
allocate on demand using free list

=

file a file b
pro: both sequential and random access easy
con?

Unix discussion

Pro?
simple, easy to build, fast access to small files
Maximum file length fixed, but large. (With 4k blks?)

Cons:
what's the worst case # of accesses?
What's some bad space overheads?

An empirical problem:

because you allocate blocks by taking them off unordered
freelist, meta data and data get strewn across disk

Indexed files
Issues same as in page tables

4—2"20 entries!

2732 file size / 4K blocks
Large possible file size = lots of unused entries
Large actual size? table needs large contiguous disk chunk

Solve identically: small regions with index array, this
array with another array, .. Downside?

More about inodes

Inodes are stored in a fixed sized array
Size of array determined when disk is initialized and can't
be changed. Array lives in known location on disk.
Originally at one side of disk:

I I Inode armyl file blocks ...

Now is smeared across it (why?)

The index of an inode in the inode array called an i-
number. Internally, the OS refers to files by inumber
When file is opened, the inode brought in memory, when
closed, it is flushed back to disk.

Multi-level indexed files: ~4.3 BSD
File descriptor (inode) = 14 block pointers + "stuff"

data blocks Tndirect M
stuff

Pir
P11 oz —
21
3 e

ptr 4

S []Indirect blks
r

ptr 13 ptr2 — []

™

ptr 14]
[F5F 128| Double indirect block

Example: Unix file system
Want to modify byte 4 in /a/b.c:

10 dirfai 127dir] ol 112 dir . i10:dir | b.c 13jn0de

Root directory

readin root directory (blk 10) |r‘efcn1=1 |14 IOII 0|
lookup a (blk 12); readin
lookup inode for b.c (13):; readin

use inode to find blk for byte 4 (blksize = 512, so offset =
0 gives blk 14); readin and modify

Turn off comments!

CS 140 Lecture 19:
(FS) consistency

Dawson Engler
Stanford CS department

Last time, this time

0 The Big News: Systems crash
- problem 1: blows away "volatile state” (main memory)
- problem 2: interrupts updates to “stable state” (disk)
Last time:
- Used state duplication and idempotent actions to create
arbitrary sized atomic disk updates.
- Today: recovery for atomic write
0 This time: Atomicity and consistency in file systems
0 Basic idea:
- limit error states by updating disk in stylized way

- after crash run recovery program that knows how to take
each error state to a valid state

- careful: can crash during recovery!

]

SABRE atomic disk operations

void atomic-put(data) blk atomic-get()
version++; # unique integer Vidata := get(V1)
put(version, V1); Dldata = get(D1);

put(data, D1); V2data = get(V2);
put(version, V2); D2data := get(D2);
put(data, D2); if(Vl data == V2)

return Didata;

else

return D2data;

0 V1,D1, V2, D2: (different) disk addresses
O version is a integer in volatile storage

0 a call to atomic-put("seat 25") might result in:
- { #2, "seat 25", #2, “seat 25" }

If we don't fix after crash, what can happento mak e us start using a wrong
value? Break into two cases: (1) we are taking las t value, does it matter if we
corrupt? (Only recycle version) (2) if we are usi ng first? (yupper)

Does 1T work?

0 Assume we have correctly written to disk:
- { #2, "seat 25", #2, “seat 25" }

0 And that the system ha i ion
atomic- pu‘I’(“Sea‘I’ 31") Could crash and get in good state again 2-3-4

0 There are 6 cases, depending on where we failed in

atomic- pLI"’: I Actually, this isn’t true: what other cases are there? (failure between!) I

put # fails possible disk contents atomic-get returns?
before {#2, "seat 25", #2, "seat 25"}
the first {#25, "seat 25" #2 “seat 25" }

the second {#3, ‘“seat 35", #2,"seat 25"} w

the third {#3, “seat 31", #2. 5 “seat 25"1

the fOLIr“H‘I {#3, “seat 31" #3 “seo‘l' 35"}' Error if crash on version mod

after {#3, "seat 31", #3 "seat 31"}

Recovery: built on idempotent operations

void recover(void) {
Vidata := get(V1); # following 4 ops same as in a-get
Didata := get(D1);
V2data := get(V2);
D2data = get(D2);
if (Vidata == V2data)
if(Dldata |= D2data)

if we crash & corrupt D2, will get here again.
put(Didata, D2)
else
if we crash and corrupt D1 will get back here
put(D2data, D1);
if we crash and corrupt V1, will get back here

pur(V2date, V1

version := Vidata

The power of state duplication

0 Most approaches to tolerating failure have at their
core a similar notion of state duplication
- Want a reliable tire? Have a spare.

- Want a reliable disk? Keep a tape backup. If disk fails,
get data from backup. (Make sure not in same building.)

- Want a reliable server? Have two, with identical copies
of the same information. Primary fails? Switch. (Make
sure not on same side of the country)

- Like caches (another state duplication): easy to
generalize to more (have 'n’ spares)

Fighting failure

0 In general, coping with failure consists of first
defining a failure model composed of
- Acceptable failures. E.g., the earth is destroyed by

weirdos from Mars. The loss of a file viewed as
unavoidable.

- Unacceptable failures. E.g. power outage: lost file not ok
0 Second, devise a recovery procedure for each
unacceptable failure:

- takes system from a precisely understood but incorrect
state to a new precisely understood and correct state.

0 Dealing with failure is *hard*
- Containing effects of failure is complicated.
- How to anticipate everything you haven't anticipated?

The rest today: concrete cases

0 What happens during crash happens during
- creating, moving, deleting, growing a file?

0 Woven throughout: how to deal with errors
- the simplest approach: synchronous writes + fsck

Synchronous writes + fsck

0 Synchronous writes = ordering state updates
- to do n modifications: 1o piock 1

\1 Wait for
write block disk
Wait for
disk
- simple but slowwww.
0 fsck:

- after crash, sweep down entire FS tree, finding what is

broken and try to fix.
.’.

- Cost = O(size of FS). Yuck. [r=1]

Unix file system invariants

0 File and directory names are unique
0 All free objects are on free list
- + free list only holds free objects
0 Data blocks have exactly one pointer to them
0 Inode’s ref count = the number of pointers to it
0 All objects are initialized

- a new file should have no data blocks, a just allocated
block should contain all zeros.

0 A crash can violate every one of thesel

File creation

0 open(“foo”, O_CREAT|O_RDWR|O_EXCL)
- 1: search current working directory for “foo”
» if found, return error (-EEXIST)
» else find an empty slot
- 2: Find a free inode & mark as allocated.
- 3: Insert (“foo”, inode #) into empty dir slot.
- 4: Write inode out to disk

dir

foo, 414

O Possible errors from crash?

Unused resources marked as “allocated"

0 If free list assumed to be Truth, then many write
order problems created.
- Rule:never persistently record a pointer to any object
still on the free list
O Dual of allocation is deallocation. The problem
happens there as well.
0 Truncate:
- 1: set pointer to block to 0.
- 2: put block on free list
- if the writes for 1 & 2 get reversed, can falsely think
something is freed
- Dual rule: never reuse a resource before persistently
nullifying all pointers to it.

N

Does a cycle matter? If we can have links to files , does this create cycles? What does?

Reactive: reconstruct freelist on crash

0 How?
- Mark and sweep garbage collection!
- Start at root directory

- Recursively traverse all objects,
removing from free list

- Good: is a fixable error. Also fixes case of allocated
objects marked as free.
- Bad: Expensive. requires traversing all live objects and
kes reboot sl

Pointers to uninitialized data

0 Crash happens between the time pointer to object
recorded and object initialized
0 Uninitialized data?
- Security hole: Can see what was in there before
- Most file systems allow this, since expensive to prevent
0 Much worse: Uninitialized meta data

Filled with garbage. On a 4GB disk, what will 32-bit
garbage block pointers look like?

Result: get control of disk blocks not supposed to have
- *Major* security hole.

inode used to be a real inode? can see old file contents
inode points to blocks? Can view/modify other files

Cannot fix, must prevent

0 Our rule:

- never (persistently) point to a resource before it has
been initialized

0 Implication: file create 2 or 3 synchronous writesl
- Write 1: Write out freemap to disk. Wait.
- Write 2: Write out Os to initialize inode. Wait.

- Write 3: write out directory block containing pointer to
inode. (maybe) Wait. (Why?)

Deleting a file

0 Unlink(“foo™)
- 1: traverse current working directory looking for “foo”
» if not there, or wrong permissions, return error
- 2: clear directory entry
- 3: decrement inode's reference count
- 4: if count is zero, free inode and all blocks it points to

0 what happens if crash between 243, 344, af ter 4?

I Could have thought you'd deleted a file, but after a crash it comes back.: I

Bogus reference count

0 Reference count to high?
- inode and its blocks will not be reclaimed
» (2 gig file = big trouble) R=2
- what if we decrement count before
removing pointer?
0 Reference count too low
- real danger: blocks will be marked free
when still in use

- major security hole: password file
stored in “freed” blocks.

R=1

- Reactive: fix with mark & sweep
- Proactive: Never decrement reference counter before

nullifying pointer to object.

Proactive vs reactive

0 Proactive:

- pays cost at each mutation, but crash recovery less
expensive.

- E.g.. every time a block allocated or freed, have to
synchronously write free list out.

0 Reactive: assumes crashes rare:

- Fix reference counts and reconstruct free list during
recovery

- Eliminates 1-2 disk writes per operation

Growing a file

0 write(fd, &c, 1)
- translate current file position (byte offset) into location
in inode (or indirect block, double indirect, ..)

- if meta data already points to a block, modify the block
and write back

- otherwise: (1) allocate a free block, (2) write out free
list, (3) write out block, (4) write out pointer to block

0 What's bad things a crash can do?

0 What about if we add block caching?
- “write back” cache? Orders can be flipped!
- What's a bad thing to reverse?

Moving a file

O

mv foo bar (assume foo -> inode # 41)
- lookup “foo” in current working directory
» if does not exist or wrong permissions, return error
- lookup “bar” in current working directory
» if wrong permissions, return error
- 1: nuke (“foo”, inode 41)
- 2: insert ("bar”, inode 41)
- crash between 1 & 2?
- what about if 2 and 1 get reordered?

Conservatively moving a file

0 Rule:
- never reset old pointer to object before a new pointer
has been set
0 mv foo bar (assume foo -> inode # 41)
- lookup foo in current working directory
» if does not exist or wrong permissions, return error
- lookup bar in current working directory
» if wrong permissions return error
: increment inode 41's reference count. Wait.
: insert ("bar”, inode 41). Wait.
: nuke ("foo”, inode 41). Wait.
- 3: decrement inode 41's reference count
O costly: 3 synchronous writes! How to exploit fsck?

N = O

Summary: the two fixable cases

O

O

Case 1: Free list holds pointer to allocated block

- cause: crash during allocation or deallocation

- rule: make free list conservative

- free: nullify pointer before putting on free list

- allocate: take off free list before adding pointer
Case 2: Wrong reference count

too high = lost memory (but safe)

too low = reuse object still in use (very unsafe)
cause: crash while forming or removing a link

rule: conservatively set reference count to be high
unlink: nullify pointer before reference count decrement
link: increment reference count before adding pointer
Alternative: ignore rules and fix on reboot.

Summary: the two unfixable cases
0 Case 1: Pointer to uninitialized (meta)data
- rule: initialize before writing out pointer to object
create("foo"): write out inode before dir block

dir

foo, 41

- growing file? Typical: Hope crashes are rare..
0 Case 2: lost objects
- rule: never reset pointer before new pointer set

- mv foo bar: create link "bar” before deleting link “foo.”
crash during = too low refent, fix on reboot.

4.4 BSD: fast file system (FFS)

o a

()

Reconstructs free list and reference counts on reboot

Enforces two invariants:

- directory names always reference valid inodes

- no block claimed by more than one inode

Does this with three ordering rules:

- write newly allocated inode to disk before name entered
in directory

- remove directory name before inode deallocated

- write deallocated inode to disk before its blocks are
placed on free list

File creation and deletion take 2 synchronous writes

Why does FFS need third rule? Inode recovery

FFS: inode recovery

O Files can be lost if directory destroyed or crash
happens before link can be set
- New twist: FFS can find lost inodes
O Facts:
- FFS pre-allocates inodes in known locations on disk
- Free inodes are to all Os.
0 So?
- Fact 1 lets FFS find all inodes (whether or not there are
any pointers to them)

- Fact 2 tells FFS that any inode with non-zero contents is
(probably) still in use.

- fsck places unreferenced inodes with non-zero contents in
the lost+found directory

Fsck: reconstructing file system

mark and sweep + fix reference counts
worklist := { root directory }
while e := pop(worklist) # sweep down from roots
foreach pointer p ine
if we haven't seen p and p contains pointers, add
if p.type I= Block ond lseen{p}
push(worklist, p):
refs{p} = prefent; # p's notion of pointers to i
seen{p} += 1 # count references to p
freelist[p] = ALLOCATED; # mark not free
foreach e in refs # fix reference counts
if(seen{e} I= refsfe})
assert(p.typehas_refcent); # shouldn't happen
e.refent = seenfel;
e.dirty = true;

Write ordering

0 Synchronous writes expensive
- sol'n have buffer cache provide ordering support

0 Whenever block "a" must be written before block “b"
insert a dependency

e] [c |

- Before writing any block, check for dependencies
- (when deadlock?)

0 To eliminate dependency, synchronously write out
each block in chain until done.

- Block B & C can be written immediately

- Block A requires block B be synchronously written first.

CS 140 Lecture 20:
SPEED! SPEED! SPEED!

Dawson Ergler
Stanford CS department

Past, Present & Future

Recent past:
dealing with failure.
Recent present (today):
dealing with huge disk latencies
Recent future (monday):
dealing with reality: actual file systems
dealing with multiple disks (raid)
Further future:
next week: networking
Readings (all on course web page):
A Fast File System for UNIX (paper)
Unix implementation paper

Sucking + blowing data through slow straws

Latency tricks

Caching (data centric)

Code migration (code centric)

Prefetching (dual: asynchronous writes)

Clever data layout
Throughput tricks:

Increase bandwidth? Duplicate device N times

Hide latency? Run another thread while waiting

“Money can buy bandwidth. Latency requires bribing God."
These tricks are eternal themes

use whenever need fast access to data living in slow place

common straws: I/0 bus, memory bus, network, space
(bi-directional), time (uni-directional)

Caching: the buffer cache

Our cliché: past predicts future? Use a cache.
Blk514 |»[Bk1t P{ Blk201

[Bkeoz | Bkl |
| Bk2o3 [Bkuuz |

Buffer cache roughly similar to page cache
good: memory growth on similar curve as disk capacity
bad: forces 2 copies for normal interface: “cache wiping”
Our timeless cache questions:

How big? How to evict? What happens to writes? What
to prefetch?

Decision #1: Size

How big to make cac he?

Main issue: partitioning memory buffer cache and VM
page cache (its main competitor)

Blks pages
Early systems: fixed-size cache. 4 M8 5 M8

Problem: doesn't adapt to workload.
Obvious sol'n: variable sized cache.

Blks pages
6 MB*T” 3 MB

Problem: enormous files not uncommon.

Solution: fixed size caches?
Same problem sharing page cache across "n” users. Solve
in same way (with the same slidel)

Split versus shared caches

Private caches
block cache and page cache have a separate pool of pages
miss in one can only replace one of its own pages
isolates cache, preventing interference

poolbarrier
<+

[Blks (4mB) | . || Pages (4mB) |
(-

BUT: prevents one cache from using other's 7
(comparatively) idle resources
efficient memory usage needs way to (slowly) change the

allocations to each pool. Usually keep a fixed reserve
Qs: What is “slowly”? How big a pool? When to migrate?

Decision #2: Eviction policy

"Dance with the one that brought you"
The reason we used a cache was because past ~ future.
So use LRU (as usual). New twist: can have perfect LRU!

New twist #2: Unfortunately, now it's less of a good idea
since many files much bigger than VM objects.

What to do when file larger than cache?
LRU = exact worse thing. ILRU = best thing! (MRU)

File has 4 blocks | 1|| 2|| 3|| 4|

Reference
strings =< LRU MRU
1234 # of faults
123412341234 for 3 block cache?

Decision #3: Write back policies
Importance of writes?

. Memory size
size o ications?
e size Implications?

time

Write through (simple, but slow):

whenever modify cached block, write block to disk.

Con: makes writes slow.

Pro: keeps FS in consistent state. PC OSes do this.
Write back (faster, but complex (and dangerous)):

whenever modify block, mark as dirty. Flushed later

pro: fast writes, absorbs writes, enables batching

con: More you defer write back, the worse a crash is.

Write back complications

Fundamental tension:
On crash, all modified data in cache is lost.

Longer you postpone write back, the worst the damage is,
but the faster you are.

Four times to flush:
when block evicted (this is ~ what VM does)
when a file is closed (distributed file systems do this)
on an explicit flush ("man sync”)
when a time interval elapses (30 secs in Unix)
Write back doesn't respect ordering
crash = file in weird jumbled state
Finally: OS may not have any choice!
Disk could be doing write buffering.

Flushing nuance: All blocks are not equal

Losing some blocks worse than losing others. Usually:

File system effects:
flush modified meta data .
importance

back quickly
Note: was an implicit

side-effect of synchronous writes for meta data mods

Application effects:

have a really important file? Issue a manual flush (sync)
to make sure its saved to disk.
Databases can forced to do this. Frequently, they will
just by-pass file system.

Decision #4: what to prefetch?

Optimal: the blocks we need are fetched in just
enough time for us to use them.
Note: if we had enough disk bandwidth and ability to
predict future wouldn't need (much of) a cache: just
fetch block that will be used, and then throw way.
Example:
App issues reads disk block every 1ms
Disk can accept new request every 1ms
Each request takes 10ms to satisfy
How big a cache do we need?
The usual problem: we don't know the future.
(Cache = trade space for stupidity)

Location ~ future ("Spatial locality")

"Spatial locality”
Access one object, will probably access ones close to it
E.g., read logical block in file, probably read next too.
So, when get one block, get the next n that follow.

More precise: when access one object, will probably
access ones *related™ to it. So, cluster them, and use
above scheme.

How big is " n"?
Tradeoff: larger n means more payoff if we are right,
but more wastage if not. (Usually n < 65k bytes)
Variant: get big chunks & preferentially discard

Decision #5: scheduling d isk arm

One resource, multiple requests = scheduling problem
one disk arm, multiple read and write requests
Goals?
minimize seeks
no starvation
Disk scheduling algorithms have close analogues in
process scheduling

and, similarly, become more important as more requests.
(However, unlike job queue, disk queue usually short..)

Next: three scheduling variations
optimize seek times
newer disks require taking account of rotational delay

First-come-first-served

Schedule disk requests in order received.
Fair but may have huge seeks for no good reason.
Example: read from cylinders 0, 100, 1, 101, 2, 102
0

\ 100

1=

101
2

 ’ 102

total seek distance?

Shortest seek time first

Handle nearest request first
optimize disk arm movement, but can be (really) unfair
Example: read from cylinders 0, 100, 1, 101, 2, 102
0,

Y

1

2 »
100

Total seek distance?
SSTF = shortest-time-to-completion! 1L
Why can we do STTC? We know job length. 102

Scan (elevator algorithm)

Move arm back & f orth, handling requests underneath

more fair to requests scattered across disk, similar
performance to SSTF

0 Example: read from cylinders 0, 100, 1, 101, 2, 102

Y

1

2 »
100

Total seek distance? 101

works well when many requests 102
if not many, about 1/2 time won't get shortest seek

Original Unix File System
Simple and elega nt:

T inodes data blocks (512 bytes)

su&%rblock disk
ouns:

data blocks
inodes (directories represented as files)
hard links

superblock. (specifies number of blks in FS, counts of
max # of files, pointer to head of free list)

Problem: slow

only gets 20Kb/sec (2% of disk maximum) even for
sequential disk transfers!

A plethora of performance costs
Blocks too small (512 b ytes)

file index too large
too many layers of mapping indirection
transfer rate low (get one block at time)

Sucky clustering of related objects:
Consecutive file blocks not close together
Inodes far from data blocks
Inodes for directory not close together
poor enumeration performance: e.g., “Is”, “grep foo *.c"

Next: how FFS fixes these problems (to a degree)

Problem 1: Too small block size
Why not just make bigger?

Block size] space wasted | file bandwidth
512 6.9% 2.6%
1024 118% 3.3%
2048 22.4% 6.4%
4096 45.6% 12.0%
1IMB 99.0% 97.2%

Bigger block increases bandwidth, but how to deal
with wastage (“internal fragmentation”)?
Use idea from malloc: split unused portion.

Handling internal fragmentation
BSD FFS:

has large block size (4096 or 8192)

allow large blocks to be chopped into small ones
("“fragments”)

Used for little files and pieces at the ends of files

llTl’E I
e

file a
Best way to eliminate internal fragmentation?
Variable sized splits of course
Why does FFS use fixed-sized fragments (1024, 2048)?

Prob' 2: Where to allocate data?

Our central fact:
Moving disk head expensive
So0? Put related data close

Fastest: adjacent ~—_——

Next: in same cylinder
(can also span platters)

Next: in cylinder close by

Clustering related object s in FFS

1 or more consecutive cylinders into a “cylinder group”

Cylinder group 1

cylinder group 2\

Key: can access any block in a cylinder without performing
a seek. Next fastest place is adjacent cylinder.

Tries to put everything related in same cylinder group
Tries to put everything not related in different group (?!)

Clustering in FFS

Tries to put sequential blocks in adjacent sectors
(access one block, probably access next)

T

file a file b
Tries to keep inode in same cylinder as file data:
(if you look at inode, most likely will look at data too)

Tries to keep all inode dir in same cylinder group

(access one name, frequently access many)
“Is I

What's a cylinder group look like?

Basically a mini-Unix file system:

T inodes data blocks (512 bytes)

supelrblock

How how to ensure there's space for related stuff?
Place different directories in different cylinder groups
Keep a “free space reserve” so can allocate near existing
things
when file grows to big (1MB) send its remainder to
different cylinder group.

Prob' 3: Finding space for related objects

Old Unix (& dos): Linked list of free blocks
Just take a block off of the head. Easy.

Bad: free list gets jumbled over time. Finding adjacent
blocks hard and slow

FFS: switch to bit-map of free blocks
1010101111111000001111111000101100
easier to find contiguous blocks.
Small, so usually keep entire thing in memory
key: keep a reserve of free blocks. Makes finding a
close block easier

Using a bitmap

Usually keep entire bitmap in memory:
4G disk / 4K byte blocks. How big is map?

Allocate block close to block x?
check for blocks near bmap[x/32]
if disk almost empty, will likely find one near
as disk becomes full, search becomes more expensive and
less effective.

Trade space for time (search time, file access time)
keep a reserve (e.g, 10%) of disk always free, ideally
scattered across disk
don't tell users (df --> 110% full)

N platters = N adjacent blocks
with 10% free, can almost always find one of them free

So what did we gain?

Performance improvements:
able to get 20-40% of disk bandwidth for large files
10-20x original Unix file system!
Better small file performance (why?)

Is this the best we can do? No.

Block based rather than extent based
name contiguous blocks with single pointer and length
(Linux ext2fs)

Werites of meta data done synchronously
really hurts small file performance

make asynchronous with write-ordering ("soft updates”)
or logging (the episode file system, ~LFS)
play with semantics (/tmp file systems)

RAID: exploiting multiple disks

“Redundant array of ine xpensive disks"
(acronym from same people that named RISC)
Empirical observation:
to get given capacity much cheaper to buy n small disks
than 1 large one.
Once you buy multiple disks, can do some neat tricks
Trick 1: n-fold bandwidth increase (ideal)
stripe data across multiple disks
read/write from all simultaneously
(common theme: money buys bandwidth by buying multiple
straws (networks, disks, highway lanes,..))
Trick 2: use to increase reliability
keep copies of data on different disks. Switch on failure

Theme 1in RAID: Major bandwidth

Striping: smear data across all disks.
Ideal: N reads/writes going in parallel "RAID 0"

Basic idea: straw too thin? Buy more of them and
suck in parallel.
Problem: reliability.

N disks, probability that one blows up increases as well.

Independent failures? 100 disks = 100 more likely that
one is down. MTTF of 200K hrs/100 = 2Khrs ~ 3months

Theme 2 in RAID: Reliability

Mirroring: improves reliability (and read performance)

"RAID 1"

every read/write operation issued to both disks
Basic idea (seen before):

duplicate state to increase reliability
Like backups except:

copy is completely up to data

“crossover” is fast

fault-tolerant systems use this basic trick a lot

Cute xor tricks

Recall:

x"x=0

ifz=x"ytheni x=z"yandy=2z"x

proofi x =x "y "y, but x “y=zs0(x"y) "y=2z"y
So0? Instead of mirroring, use one disk to hold z!

z = xor of all other disks

/y\ /;I\ CZ
. \‘A — : \

recover from any single failur'el by xoring the remaining
disks with this "parity” disk.

Block-interleaved parity tradeoffs

Meee———— [Me—— 1

+ less space than mirroring
+ much better bandwidth in ideal case
Prob 1: “the small write problem” "RAID 4"
Must recalculate parity on each write.
If write entire stripe, no problem. If not writing 1 block
requires 2 reads + 2 writesl!
Prob 2: parity disk = bottleneck
If one disk used for parity, it will always be busy
sol'n: let the parity block in each group float around.

Parity disk

Block-interleaved Distributed parity

=

\
N

I

T T
Par‘i‘>y bloc'g "RAID 5"
+ eliminates parity disk bottleneck
+ all disks can participate in read requests
best small read, large read, & large write performance
(still whipped by mirroring on writes)

Reliability variant: write-ahead logging

We ordered file system operations to guard against

corruption.

Instead:
Create a record(s) of what we intend to do and append to
end of a log (sequential array of records).
Then write updated log to disk. Then do the action
After crash, start at beginning of log, doing each action.
Actions must be idempotent. Allows us to keep replaying
log until we consume it, no matter how many times we're
interrupted by a crash.
Optimization: allow recovery to skip records by grouping
records into transactions and placing a commit entry in

log when all actions in a transaction have been
successfully performed.

Example: write-ahead logging

to create a file foo.c write two log records

write ("foo", 51) @ byte 30 in blk 319 # create link
write Os into blk 51

initialize inode]

Log grows downward

Werite log to disk. Then modify cached copies of blks
319 and 51. After these written to disk, write
commit.

Key: brute writes are always idempotent.

E.a.. can repeat “i = 5" as often as vou want

What have we gained?

Result 1: freedom from ordering tyranny

If log holds records for many dependencies, a single disk
write eliminates many sequential dependencies.

Can then write blocks containing actual directories and
inodes in any order

(key: don't have to wait 10ms before writing the next)
Result 2: fast recovery

Rather than scan entire disk checking for errors, just
reply log. Much much faster

the episode file system does this.
Result 3: compressed dependency representation

if the machine has small amount of non-volatile RAM,
keep log in it. Potentially eliminate *all* ordered writes!

